Jump to content
Electronics-Lab.com Community

Aman bharti

Members
  • Content Count

    20
  • Joined

  • Last visited

About Aman bharti

  • Rank
    Member

Recent Profile Visitors

1,038 profile views
  1. LOGIC GATES Logic gates are the basic building elements of any digital systems or circuits. The name Logic gate is derived from the sense of the making decisions ability of such a device, and after making decisions it produce one output result. We can say that Logic gates are the fundamental building blocks of any digital circuits or digital systems. There are 3 basic Types of Logic gates – (1)-AND , (2)-OR , (3)-NOT Basically Logic gates are elementary electronic logic circuit that can make a variety of different types of circuits by interconnection of these three gates to perform complex logically operations of any computer. This is called logic design. Logic gates made a number of electronic devices and other digital components. In practical application of logic gates we see in the form of different Ics. These Ics are in LSI (Large scale integration), VLSI (Very large scale integration ) and SSI (Small scale integration) . Input and Outputs of Logic gates in only two levels called TRUE and FALSE , or HIGH and LOW, or ON and OFF, or very popular 0 and 1. High (1 or TRUE or ON) means +5v LOW(0 or FALSE or OFF) means 0v (or -ve supply) These 2 level logic also called Positive and Negative Logic. AND GATE AND gate has two or more than two inputs and only one Output. In AND gate Output is High or 1 only when each input of it has in HIGH state. Means output is 1 if only all inputs are at 1 level. If any one input goes at 0 level then the output of AND gate becomes 0 . Logic Symbol Input Variables are represented by A,B,C…… and the the output is written as X. In the Boolean expression it can be written as X=A.B.C……. It Can be read as X is equal to A and B and C ….or X is equal to A dot B dot C…. or X is equal to ABC….. Realization of AND Gate- AND gate may be realized by the using of diode and transistors. If it made by using diodes then it called as DL(Diode Logic) and if using transistors it called as RTL (Resistor Transistor Logic) . In the Diode Logic AND gate When the input A = +5v and input B is also +5v, in this case both diodes D1 and D2 are off (because of reverse mode). And therefore no current flows through resistor R. So no voltage drop occurs across R and voltage remain at the output is HIGH. When A=0, and B=0v or any one of A or B is 0v. Then the both diodes or corresponding Diode D1 or D2 are ON and the circuit is act as short circuit. In this condition the output X=LOW or 0v. RTL AND Gate circuit In the RTL AND gate or transistor gate, When A=0v and B=0v. Then the transistors Q1 and Q2 are off but transistor Q3 remain in ON, and the voltage at output is LOW or 0v because of Q3 ON and current pass through Q3 and voltage is dropped through R. If Any one of input A or B is high then Either Q1 or Either Q2 will off and then no voltage drop occurs at R. So Q3 Will remain in turn on and therefore output will LOW. If input A and input B both are HIGH then both transistors Q1 and Q2 will turn on and current passes through these transistors between ground and +5v and voltage will LOW at the collector pin of T1 and at input of Q3 . So Q3 will off and no voltage drop at collector pin and output will HIGH. At HIGH condition the voltage at output is approx 5v (X≈5v). Also read Ultrasonic Distance measurement project using Arduino OR gate- OR gate have also two or more than two inputs but only one output. The output is HIGH or 1 if even any one of input is 1. The output is o or LOW if all of its input is in LOW state or 0 . OR gate is defined as the device which output is o if any one of its input is 1. Must read What is NOT gate The Logic symbol for OR gate is +. The Boolean expression for the output can be written as X=A+B+C+…… This is written as X is equal to A plus B plus C or it can also be read as X is equal to A or B or C or ….. . Realization of OR gates can be made using Diodes(Diode Logic) or Transistors(RTL). In the diode or gate, when both input A and B=0v or LOW , then both diodes D1 And D2 are OFF state because of reverse biasing. So No any current pass Through R and No voltage drop will occur . Then the output X=0v . If both input or any one of both input are +5v . Then the corresponding diode D1 or D2 is On or both diode D1 and D2 are ON and short circuit occur across them. Therefore the output X is approx to +5v. voltage drop across diode is +5v-0.7v= 4.3v . But this is treated as HIGH or 1. In the Transistor (RTL) logic OR gate circuit, When both input A & B are 0v. Transistors Q1 and Q2 are OFF and Transistor Q3 is ON because of it get Base voltage through Resistor R1. So the output voltage at Collector pin of Q3 go 0v by dropping of voltage with ground at R2 . If any one of any input A or B is HIGH or 1 then the corresponding transistors in ON state . So voltage at the collector of that transistor goes to 0v by voltage drop and there is no any Base voltage at the Q3 and no any voltage drop occurs at R2 therefor the output is HIGH OR 1. The Universal Gates Universal gates are defined as Which logic gates can implement any types logic gates . There are two universal gates NAND and NOR. Both NAND and NOR gates can perform all the three basic logic functions of AND, OR, NOT. AOI (AND/OR/INVERT(NOT)) can be converted to NAND logic or NOR logic. Types of Universal Gates NAND Gate (NOT-AND) NAND gate is a combination of AND gate and NOT gate. If the output of AND gate is Inverted then it is called NAND gate. NAND = NOT AND. When AND output is NOTed or Inverted then it is called NAND gate. The output is 0 only if each inputs is 1 and output is 0 if any one of any input or all inputs are 0. Means when all inputs are 1 then output will 1 otherwise if different combination of input the output is 0. The boolean expression of NAND gate is written as X= This is read as X=A.B.C….whole bar. Realization of NAND gate- A two input NAND gate can be realized using Diode Transistor Logic. When the input A and B both are HIGH or +5v then both diodes are off and transistor get base voltage through R1 . So the transistor is ON and the output voltage at collector is 0v because of dropped voltage with ground. When Both input A and B are 0v then the both diode are in ON because of forward bias (here 0v means negative supply) . So Base voltage of transistor is 0v. So Transistor is in OFF and then the output is HIGH or approx +5v. NOR Gate When the output of OR gate is NOTed or inverted then it is called NOR gate. NOR means NOT OR. NOR gate is the combination of an OR gate and a NOT gate. The output is 1 or HIGH when only the both input is 0 or LOW. Otherwise output is 0. The boolean expression for the NOR gate is expressed as given below This is read as X is equal to A plus B plus C plus .....whole bar. Realization of NOR gate- For more circuits and tutorials click here Two input RTL(Resistor transistor logic) NOT gate can be realized using two transistors and resistors. When Input A and B both are 0. A=0 and B=0. Then both transistors are OFF because no base voltage get. So no current flows through transistors and no voltage drop occurs. Therefore only current passes through R the output is HIGH. Also read Arduino remote control AC load
  2. LOGIC GATES Logic gates are the basic building elements of any digital systems or circuits. The name Logic gate is derived from the sense of the making decisions ability of such a device, and after making decisions it produce one output result. We can say that Logic gates are the fundamental building blocks of any digital circuits or digital systems. There are 3 basic Types of Logic gates – (1)-AND , (2)-OR , (3)-NOT Basically Logic gates are elementary electronic logic circuit that can make a variety of different types of circuits by interconnection of these three gates to perform complex logically operations of any computer. This is called logic design. Logic gates made a number of electronic devices and other digital components. In practical application of logic gates we see in the form of different Ics. These Ics are in LSI (Large scale integration), VLSI (Very large scale integration ) and SSI (Small scale integration) . Input and Outputs of Logic gates in only two levels called TRUE and FALSE , or HIGH and LOW, or ON and OFF, or very popular 0 and 1. High (1 or TRUE or ON) means +5v LOW(0 or FALSE or OFF) means 0v (or -ve supply) These 2 level logic also called Positive and Negative Logic. AND GATE AND gate has two or more than two inputs and only one Output. In AND gate Output is High or 1 only when each input of it has in HIGH state. Means output is 1 if only all inputs are at 1 level. If any one input goes at 0 level then the output of AND gate becomes 0 . Logic Symbol Input Variables are represented by A,B,C…… and the the output is written as X. In the Boolean expression it can be written as X=A.B.C……. It Can be read as X is equal to A and B and C ….or X is equal to A dot B dot C…. or X is equal to ABC….. Realization of AND Gate- AND gate may be realized by the using of diode and transistors. If it made by using diodes then it called as DL(Diode Logic) and if using transistors it called as RTL (Resistor Transistor Logic) . In the Diode Logic AND gate When the input A = +5v and input B is also +5v, in this case both diodes D1 and D2 are off (because of reverse mode). And therefore no current flows through resistor R. So no voltage drop occurs across R and voltage remain at the output is HIGH. When A=0, and B=0v or any one of A or B is 0v. Then the both diodes or corresponding Diode D1 or D2 are ON and the circuit is act as short circuit. In this condition the output X=LOW or 0v. RTL AND Gate circuit In the RTL AND gate or transistor gate, When A=0v and B=0v. Then the transistors Q1 and Q2 are off but transistor Q3 remain in ON, and the voltage at output is LOW or 0v because of Q3 ON and current pass through Q3 and voltage is dropped through R. If Any one of input A or B is high then Either Q1 or Either Q2 will off and then no voltage drop occurs at R. So Q3 Will remain in turn on and therefore output will LOW. If input A and input B both are HIGH then both transistors Q1 and Q2 will turn on and current passes through these transistors between ground and +5v and voltage will LOW at the collector pin of T1 and at input of Q3 . So Q3 will off and no voltage drop at collector pin and output will HIGH. At HIGH condition the voltage at output is approx 5v (X≈5v). Also read Ultrasonic Distance measurement project using Arduino OR gate- OR gate have also two or more than two inputs but only one output. The output is HIGH or 1 if even any one of input is 1. The output is o or LOW if all of its input is in LOW state or 0 . OR gate is defined as the device which output is o if any one of its input is 1. Must read What is NOT gate The Logic symbol for OR gate is +. The Boolean expression for the output can be written as X=A+B+C+…… This is written as X is equal to A plus B plus C or it can also be read as X is equal to A or B or C or ….. . Realization of OR gates can be made using Diodes(Diode Logic) or Transistors(RTL). In the diode or gate, when both input A and B=0v or LOW , then both diodes D1 And D2 are OFF state because of reverse biasing. So No any current pass Through R and No voltage drop will occur . Then the output X=0v . If both input or any one of both input are +5v . Then the corresponding diode D1 or D2 is On or both diode D1 and D2 are ON and short circuit occur across them. Therefore the output X is approx to +5v. voltage drop across diode is +5v-0.7v= 4.3v . But this is treated as HIGH or 1. In the Transistor (RTL) logic OR gate circuit, When both input A & B are 0v. Transistors Q1 and Q2 are OFF and Transistor Q3 is ON because of it get Base voltage through Resistor R1. So the output voltage at Collector pin of Q3 go 0v by dropping of voltage with ground at R2 . If any one of any input A or B is HIGH or 1 then the corresponding transistors in ON state . So voltage at the collector of that transistor goes to 0v by voltage drop and there is no any Base voltage at the Q3 and no any voltage drop occurs at R2 therefor the output is HIGH OR 1. The Universal Gates Universal gates are defined as Which logic gates can implement any types logic gates . There are two universal gates NAND and NOR. Both NAND and NOR gates can perform all the three basic logic functions of AND, OR, NOT. AOI (AND/OR/INVERT(NOT)) can be converted to NAND logic or NOR logic. Types of Universal Gates NAND Gate (NOT-AND) NAND gate is a combination of AND gate and NOT gate. If the output of AND gate is Inverted then it is called NAND gate. NAND = NOT AND. When AND output is NOTed or Inverted then it is called NAND gate. The output is 0 only if each inputs is 1 and output is 0 if any one of any input or all inputs are 0. Means when all inputs are 1 then output will 1 otherwise if different combination of input the output is 0. The boolean expression of NAND gate is written as X= This is read as X=A.B.C….whole bar. Realization of NAND gate- A two input NAND gate can be realized using Diode Transistor Logic. When the input A and B both are HIGH or +5v then both diodes are off and transistor get base voltage through R1 . So the transistor is ON and the output voltage at collector is 0v because of dropped voltage with ground. When Both input A and B are 0v then the both diode are in ON because of forward bias (here 0v means negative supply) . So Base voltage of transistor is 0v. So Transistor is in OFF and then the output is HIGH or approx +5v. NOR Gate When the output of OR gate is NOTed or inverted then it is called NOR gate. NOR means NOT OR. NOR gate is the combination of an OR gate and a NOT gate. The output is 1 or HIGH when only the both input is 0 or LOW. Otherwise output is 0. The boolean expression for the NOR gate is expressed as given below This is read as X is equal to A plus B plus C plus .....whole bar. Realization of NOR gate- For more circuits and tutorials click here Two input RTL(Resistor transistor logic) NOT gate can be realized using two transistors and resistors. When Input A and B both are 0. A=0 and B=0. Then both transistors are OFF because no base voltage get. So no current flows through transistors and no voltage drop occurs. Therefore only current passes through R the output is HIGH. Also read Arduino remote control AC load
  3. In this project, a complete design and development procedure of a digital thermometer has been discussed. The algorithm used in this design is simple and easy to understand. The components used are limited and readily available in the market. Although the overall development of this project is lowcost and easy still the results are extraordinary. Let’s see how this design works. Arduino and LM35 based digital thermometers can be developed at home with very few components and instruments needed. Arduino UNO used in this design is a microcontroller which is responsible for data handling and processing for temperature calculation and display. Arduino UNO has digital I/O and Analog pins. In this case, we are using both. The next component is LM35 which is a temperature sensor and looks more like a simple BJT. LM35 is cheap as compared to most of the temperature sensors and yet offers a high level of accuracy even at extreme temperatures. LM35 can be used in both analog circuits and embedded systems since it offers analog voltages at the output. The circuit diagram described in this simulation video is simple and can be easily modified if needed. Click For Full Project Detail Simulation Video Testing Video Click for Coding and full project detail .
  4. This is modified circuit and also again tested You are right Sir But i also surprised to this circuit works without that resistor which you connect here. This is tested on breadboard with and without this resistor When i connect that that resistor then the output goes very low and circuit is less sensitive I also tested this circuit with 3-6v I never want to place any circuit with wrong information ----------------------------------------------------- This Inverter circuit is given from a trusted youtube channel on the robotics. He is showing in video on breadboard using this circuit. As name this is a simple inverter, so how this can powerful and regulated ???? Output Power is Also Depend on Transformer Ampere. In text also advised to use minimum of 1 A Transformer, not only 1 A Your corrected circuit is correct but my circuit is not wrong. One BD140 PNP transistor was also connected as here on that video.
  5.  This circuit is 100% working. This is simplified diagram

    No Any Direct Supply given on ic , Resistor is used

    volume control connection is right. Check again

    Which inverter circuit is wrong, tell me . 

    I will modify if any wrong  

    1. audioguru

      audioguru

      The volume control in your amplifier schematic is backwards. When it is turned down then instead of simply making a voltage divider with the signal, it shorts the input signal's high frequencies to ground but allows very low frequencies to be amplified.

    2. Aman bharti

      Aman bharti

      This diagram is only for instructional. These common matters are understand by reader.

  6. 100% working This diagram was given by one user that used already this circuit at home by implement from This diagram. No Direct supply given on ic. capacitor may only one issue Which inverter circuit is wrong , please tell me , I will checked and modifiy This diagram is given by one user that used already this project at home by implement from This diagram. Which inverter circuit is wrong , please tell me , I will check and modify
  7. 4558 ic Audio Power Amplifier Circuit Diagram circuitspedia.com This is circuit diagram of powerful audio amplifier. This circuit is given by Emmanuel. In this circuit one ic 4558 and 4 Power transistors are used with some discrete components. Use 20v-to 60v for operating this circuit. This is a single channel audio amplifier circuit. Use capacitor of minimum 50v value. Positive supply voltage is given at the middle pin of both transistor TIP41C and D718. Negative supply is given at middle terminal of D688and TI42C Transistor. R1 is the variable resistor potentiometer for volume control. This vol. control may be value of 50k to 100k. Use Big size speaker with this circuit. 4558 Audio Amplifier Circuit Diagram. In image of assembled kit there is no 5w resistor connected 100% Working for more Amplifier circuit click here
  8. This is an Automatic submersible Motor controller circuit using transistor • The Main Advantage Of this Project Is To All Three LEDs Are Glowing One by One. Only One LED is Glowing At One Level And Other Two Are in Off state. Below is a modified ckt that has advantage of Motor will Again start only if the water level goes to less than half Click here for full detail For more circuits go to www.circuitspedia.com
  9. http://www.circuitspedia.com/blinking-led-flasher-circuit-diagram-with-555/ http://www.circuitspedia.com/simple-5-led-blinker-flasher-circuit-blinking-led-running-chaser-light/ 17 LED Sequencer/Flasher Circuit using 2 Counter ic 4017 Dual colour led flasher circuit For more circuit go to circuitspedia.com
  10. The LM3914 is a monolithic integrated circuit that senses analog voltage levels and drives 10 LEDs, providing a linear analog display. This ic is used for Dot and Bar Display. A single pin changes the display from a moving dot to a bar graph. Current drive to the LEDs is regulated and programmable, eliminating the need for resistors. This feature is one that allows operation of the whole system from less than 3V. From datasheet – The linear scaling of the output thresholds makes the device usable, for example, as a voltmeter. In the basic configuration it provides a ten step scale which is expandable to over 100 segments with other LM3914 ICs in series. The simplified LM3914 block diagram is to give the general idea of the circuit’s operation. A high input impedance buffer operates with signals from ground to 12V, and is protected against reverse and overvoltage signals. The signal is then applied to a series of 10 comparators; each of which is biased to a different comparison level by the resistor string. For more detail Click Here .
  11. Homemade MIC Amplifier Loudspeaker connection circuit You can connect condenser MIC with any amplifier circuit as given below diagram . This circuit will work very well with any type of Audio amplifier. Use only 3-5v for condenser MIC for best result. Audio amplifier circuit need 6-24v as per amplifier specification. Connect the positive terminal of mic with 22k resistor in series with positive supply and negative terminal of mic is directly connected to negative supply or ground. And enjoy this easy homemade MIC Loudspeaker. This Circuit works with any type of amplifier circuit. If you have no any audio amplifier then you can make an small amplifier very easily with LM386 ic. This is very popular amplifier ic and available on any electronic part store. For more Click here You can check for more simple circuit here circuitspedia.com
  12. 10A High Current Adjustable Voltage Regulator using LT1038 http://www.circuitspedia.com/10a-high-current-adjustable-voltage-regulator-circuit-diagram-using-lt1038/
  13. http://www.circuitspedia.com/transistor-as-switch-working-how-transistor-works/ For more detail click here A small Positive current required at the Base terminal for the turning on the transistor. By sending varying levels of current to the base, the amount of current flowing through the collector to emitter may be regulated. When we apply a small Positive supply at base , then Current between emitter and collector will passed and we say that transistor is turn on. A very small amount of current may be used to control a large amount of current, this property is known as amplifier . . A Diode with Parallel of relay coil in reverse connection is necessary for protection the transsistor. This must connected on both PNP and NPN
×
×
  • Create New...