NVIDIA introduces low cost Jetson TX2 NX SO-DIMM module

NVIDIA® Jetson™ TX2 NX delivers the next step in AI performance for entry level embedded and edge products. It provides up to 2.5X the performance of Jetson Nano, and shares form-factor and pin compatibility with Jetson Nano and Jetson Xavier™ NX.

The compact, power efficient Jetson TX2 NX system-on-module (SOM) is perfect for creating mass-market AI products in the fields of manufacturing, logistics, retail, service, agriculture, smart city, and healthcare and life sciences. Intelligent machine OEMs can now scale their product offerings with pin-compatible Jetson modules, while leveraging cloud-native technologies to build, deploy, and manage the same software across all of them.

Pre-trained AI models from NVIDIA NGC™, together with the NVIDIA Transfer Learning Toolkit, provide a faster path to inference with optimized AI networks, while containerized deployments bring flexible and seamless updates.

NVIDIA JetPack™ SDK enables development of AI applications for Jetson TX2 NX with accelerated libraries supporting all major AI frameworks, as well as computer vision, graphics, multimedia, and more. Together with the latest NVIDIA tools for application development and optimization, JetPack ensures fast time to market and reduced development costs.

Technical Specifications

  • AI Performance 1.33 TFLOPs
  • GPU NVIDIA Pascal™ Architecture GPU with 256 CUDA cores
  • CPU Dual-core NVIDIA Denver 2 64-bit CPU and quad-core ARM A57 Complex
  • Memory 4GB 128-bit LPDDR4, 1600 MHz – 51.2 GBs
  • Storage 16GB eMMC 5.1 Flash Storage

Ease of development and speed of deployment—plus a unique combination of form-factor, performance, and power advantage—make Jetson TX2 NX the ideal mass-market AI product platform to get to market and continuously update over the lifetime of a product.

Samples of Jetson TX2 NX modules are available now for $200 on Arrow or 140 EUR on Silicon Highway Direct. Further details may be found on the Jetson product page. [via www.cnx-software.com]

Introducing tCam-Mini – An IR thermal camera board with ESP32 module

tCam-Mini is a small wireless streaming thermal imaging camera designed by Dan Julio to make it easy to get and use radiometric data from a Flir Lepton 3.5 sensor. Radiometric data includes the temperature of every pixel captured by the Lepton allowing all kinds of interesting thermographic analysis. Of course that data can also be turned into the beautiful false-color images everyone associates with thermal imaging.

tCam-Mini comes with a capable desktop application, running on Linux, Mac OS X and Windows, making it easy-to-use, right out of the box. Custom applications running on any platform can easily communicate with tCam-Mini via a socket interface. Commands and data are transferred as easy-to-parse json strings.

Capabilities

  • The tCam-Mini camera exposes the full capabilities of the Lepton.
  • The camera can operate in either Radiometric/TLinear (each pixel contains temperature data) or AGC modes (no temperature data in each pixel but better images).
  • Simple json-based command set with communication of a TCP/IP Socket. Makes interfacing with the camera very simple from a custom application.
  • AP or STA (client) Wifi modes (static or DHCP-served IPV4 address).
  • Single image or streaming data modes.
  • Control over sensor emissivity, gain and spotmeter location.

The companion desktop application makes it easy to use the camera and analyze the data from it.

  • Display images or streams with multiple palettes.
  • Save and load images or streams in files preserving the radiometric data for use later or by other applications. Two file formats: image and video (described in the github repository).
  • Export images as jpg, png or tiff files.
  • Copy current image to computer’s clipboard.
  • Histogram display and analysis of pixel populations.
  • Spotmeter and up to four additional markers showing temperature at various points in an image.
  • Graphing function to plot spotmeter and marker data over time.
  • Graph baseline mode to allow comparing temperatures to a reference point in the scene (for example to compare a temperature to a blackbody constant).
  • Export graph data in a text file for analysis by other programs.
  • Print graph (or create a PDF on computers that can print to PDF).

Hardware Overview

  • Espressif ESP32-WROVER-E Module (ESP32-D0WD0V3, 8 MB PSRAM, 8 MB Flash) with built-in antenna
  • Flir Lepton 3.5 (160×120 pixel radiometric LWIR camera with shutter)
  • CP2102N-A02 USB to UART bridge with ESP32 boot loader control
  • Multi-voltage power supply (3.3V, 3.0V, 2.8V, 1.2V)
  • Dual color (Red/Green) status LED
  • Factory Wifi Reset button

Open Source

The hardware and firmware design files are available in Dan’s Github repository.  The firmware is designed to be compiled using Espressif IDF tools and new code can be loaded via the built-in USB Serial port.  Precompiled binary files are also provided for easy upgrades.

Development is ongoing with new features and additional software support planned including a python library and web server.

more information: https://groupgets.com/campaigns/919-tcam-mini

Capacitech Cable-Based Capacitor

Capacitech Cable-Based Capacitor (CBC) offers a 1.6VDC rated voltage, 1.25A current rating, and 0.3mA maximum leakage current. The CBC is a flexible, wire-shaped supercapacitor that offers space and aesthetic advantages through the ability to be used as part of a product or system’s wiring infrastructure. This supercapacitor’s thin and flexible design allows it to be built inside of DC power cords, rather than be limited to a printed circuit board. Capacitech Cable-Based Capacitor is ideal for emergency lighting, automotive systems, energy harvesting, and renewable energy systems.

Features

  • Flexible and wire-shape form factor
  • Use as part of wiring infrastructure
  • Cable-based backup power
  • Cable-based boost power
  • Size, space, aesthetic advantages
  • Electronics miniaturization

Applications

  • Peak power complement
  • Emergency lighting
  • Renewable energy systems
  • Automotive systems
  • IoT, automation, and security devices
  • Backup system
  • Energy harvesting
  • Advanced and smart metering

more information: https://www.capacitechenergy.com

Texas Instruments TPS3899 Precision Voltage Supervisor

Texas Instruments TPS3899 Precision Voltage Supervisor is a nano power, precision voltage supervisor with ±0.5% threshold accuracy, programmable sense, and reset time delay in a 6-pin space-saving 1.5mm x 1.5mm WSON package. The TPS3899 is a feature-rich voltage supervisor that offers the smallest total solution size in its class. Built-in hysteresis, along with programmable delay, prevents false reset signals when monitoring a voltage rail or push-button signals.

The separate VDD and SENSE pins allow for the redundancy sought by high-reliability systems. SENSE is decoupled from VDD and can monitor rail voltages other than VDD. Optional use of external resistors is supported by the high impedance input of the SENSE pin. Both CTS and CTR provide delay adjustability on the rising and falling edges of the RESET signals. CTS also functions as a debouncer by ignoring voltage glitches on the monitored voltage rails and operates as a “manual reset” that can be used to force a system reset.

The precision performance, best-in-class features in a compact form factor makes the Texas Instruments TPS3899 an ideal solution for wide-ranging industrial and battery-powered applications such as Factory/Building Automation, Motor Drives, and consumer products. The device is fully specified over a temperature range of –40°C to +125°C (TA)

Features

  • Precision voltage and push-button monitor
  • 0.85V to 6V (DL and PL outputs) VDD range
  • 1V to 6V (PH output) VDD range
  • Programmable sense and reset delay
  • 125nA (typ) nano quiescent current
  • ±0.5% (typ) high threshold accuracy
  • 5% (typ) precision hysteresis:
  • 0.505V (typ) adjustable threshold voltage
  • 0.8V to 5.4V fixed threshold voltage
    • Fixed threshold level available in 100mV steps
  • Multiple output topologies
    • DL – open-drain active-low
    • PL – push-pull active-low
    • PH – push-pull active-high
  • –40°C to +125°C temperature range
  • 1.5mm × 1.5mm WSON package

more information: https://www.ti.com/product/TPS3899

FWS-2365: Powering Faster, More Flexible Network Structures

AAEON, a leading manufacturer of network appliances and white box solutions, has released the FWS-2365 desktop network appliance. Designed with a range of powerful features including 5G support and four SFP+ ports, the FWS-2365 powers faster, smarter networks for SD-WAN and uCPE applications.

The FWS-2365 is powered by Intel® Atom™ C3000 processors (formerly Denverton) with support for processors from four to sixteen cores, delivering performance to power more functions. With the Intel processors, the system supports vital performance acceleration tools including Intel QAT, SR-IOV, AES-NI, Virtualization Technology and DPDK. The FWS-2365 also supports TPM and Secure Boot to help maximize data and system security.

The FWS-2365 is built to deliver faster network speeds and higher throughput with up to four SFP+ Fiber 10 Gbps ports, and up to six copper Gigabit LAN ports, two of which can be upgraded to SFP. The FWS-2365 supports LAN Bypass functionality to provide uninterrupted connection and service.

The FWS-2365 is also built to maximize wireless performance, supporting up to three wireless expansion cards and six antennas. The FWS-2365 can support a combination of cards including Wi-Fi, 4G and 5G cellular communication. This allows for greater support for IoT connected devices and leverages the benefits of 5G to enable more flexible network structures.

Features

  • Intel® Atom® Processor C3000 series
  • 10/100/1000Base-TX Ethernet x 6
  • Supports 1 pair bypass (LAN 3 ~ 4)
  • Up to 4 x 10G SFP+ Port (C3558 only supports 2 port)
  • DDR4 SODIMM socket x 2
  • SATA III Port x 2
  • On board 16GB eMMC, up to 128GB
  • Mini-card slot x 1 (Half-size, PCIe), Mini-card slot x 1 (Full-size, PCIe + USB2.0) with SIM slot
  • M.2 B key 3052 x 1 (USB3.0) with SIM slot
  • USB3.0 TypeA Port x 2 (1 Port only support USB2.0 signal)

The FWS-2365 is purpose built for white box uCPE and SD-WAN network applications. It is easy to setup and configure for a range of NFV functions such as firewall and router, as well as VPN. The FWS-2365 also supports Zero Touch Provision (ZTP) to make deployment, setup and network authorization even easier. The system also supports remote console connection for more flexible system management and monitoring.

AAEON provides industry leading service and support to ensure long lasting, reliable performance. AAEON also provides a range of manufacturer and OEM/ODM services, from software support to custom configurations and even full ground-up system design to ensure every requirement is met.

“With the combination of high core count Intel processors and focus on delivering greater speeds and throughput, the FWS-2365 is the perfect solution for white box uCPE and SD-WAN network applications,” said Fredy Hsu, Product Manager with AAEON’s Network Security Division. “With 5G connectivity and 10Gbps SFP+ support, it allows NFV, VNF vendors, and communications service providers (CSP) to accelerate deployment of SD-WAN, SD-security, QoS and other SDN/NFV applications.”

more information: https://www.aaeon.com/en/p/white-box-desktop-network-appliance-fws-2365

ADLINK adopts Upverter to offer customers full automation of SMARC carrier board design

ADLINK Technology Inc., a global leader in edge computing, announces its partnership with Altium, a leader in PCB design software, to offer a fully automated SMARC carrier design process to its customers, leveraging Upverter — a web-based drag-and-drop designer tool. The Upverter tool requires minimal engineering skills, allowing customers to create their own SMARC based carrier board design within hours, and receive prototypes within weeks. Upverter generates the electrical design files of fully custom-defined carrier board designs on demand, as well as an instant Bill of Materials (BOM) complete with pricing, a customized device tree, documentation, and mechanical models.

The Upverter tool is a core component of Altium’s cloud technology platform. As Ted Pawela, Chief Ecosystem Officer, explains,

“Altium’s embeddable experiences can be added to partner websites using only a couple of lines of code. Upverter offers ADLINK’s customers a simple yet innovative way to bring new products to life.”

ADLINK’s design ecosystem called I-Pi SMARC accelerates industrial grade AIoT/IoT hardware development with standardized modular building blocks and up to 15 years longevity. The design service is available for SMARC modules based on NXP’s IMX8M and i.MX8M Plus and Rockchip’s PX30.

Accessible through ADLINK’s I-Pi SMARC website: https://www.ipi.wiki/pages/carrier-designer

The ADLINK I-Pi SMARC modular approach to hardware and software addresses the aggressive timeline issue that customers face and has become the most challenging aspect of a professional engineer’s job. The I-Pi SMARC ecosystem combines industrial grade components, extreme software portability, and Raspberry Pi-like flexibility and expansion in a SMARC form factor. Fast prototyping and proof of concept are key milestones of a successful project.

“The Upverter tool is an innovative improvement of handling the proof-of-concept and prototyping phase for custom products. It will reduce the needed time to almost 50% in comparison to current approaches,” said Carsten Rebmann, Modules Product Manager at ADLINK.

Upverter is available through ADLINK’s I-Pi SMARC website starting on March 1st 2021 as a trial for interested adopters. ADLINK will release the tool for production later in 2021.

Visit the website: https://www.ipi.wiki/

Energous Partners With e-peas to Advance At-a-Distance Wireless Charging Applications Greater Than 1 Meter

Energous and e-peas will develop an evaluation board to support at-a-distance wireless charging applications for smart buildings, industrial IoT sensors, retail electronic displays and more. (Photo: Business Wire)

Energous Corporation, the developer of WattUp®, a revolutionary wireless charging 2.0 technology, announced a partnership with e-peas S.A. (“e-peas”), a leading semiconductor company developing energy harvesting PMICs and extremely low-power microcontrollers, to develop an evaluation board combining e-peas’ power management IC technology with Energous’ radio frequency (RF) solution to support at-a-distance wireless charging applications for smart buildings, industrial IoT sensors, retail electronic displays and more.

“Our WattUp technology is designed for the growing retail, smart building and industrial IoT markets to address concerns around battery life and maintenance logistics.”

Tweet this“As a leader in at-a-distance wireless charging, we are excited to work closely with e-peas, the leading supplier of IoT energy harvesting power management and extremely low-power microcontrollers at the edge, to offer integrated solutions like this board to allow for faster evaluation of distance-based wireless charging,” said Stephen R. Rizzone, president and CEO of Energous Corporation. “Our WattUp technology is designed for the growing retail, smart building and industrial IoT markets to address concerns around battery life and maintenance logistics.”

“The results of this joint effort between Energous and e-peas will be to introduce the capabilities and advantages of a small form factor, highly integrated solution that will enable charging distances greater than one meter, eventually extending out to several meters,” said Cesar Johnston, COO and executive vice president of Energous Corporation. “The core WattUp technology supporting this evaluation board is an outgrowth of the common architecture we have developed, which emphasizes scalability for all chip, hardware, software and antenna elements of the technical solution. “

Belgium-based e-peas provides energy harvesting and processing solutions to give infinite battery life to wireless devices by increasing the amount of harvested energy and by drastically reducing the energy consumption. Key applications for e-peas solutions include smart buildings, industrial IoT sensors and retail. This evaluation board will allow companies to integrate this technology for testing and evaluation in the smart buildings, wireless sensors market and electronic displays. The wireless sensors market alone is projected to grow nearly 3x in the next four years, from $5B in 2019 to $14.6B by 2025.

“As the wireless sensors market grows, so too is the need for avoiding battery maintenance costs. That is why at-a-distance solutions capable of charging more than a meter away are critical,” said Geoffroy Gosset, CEO and co-founder of e-peas. “We believe that the combination of both Energous’ WattUp and e-peas AEM technologies on a single evaluation board will ease the deployment of zero-maintenance solutions on multiple markets.”

The evaluation board functionality is expected to include:

  • DA2210 WPT rectifier
  • E-peas AEM30940 harvesting PMIC
  • Supercap or rechargeable lithium battery support
  • Smartbond DA14531-based BLE SoC
  • Ambient light and temperature/humidity sensors
  • Support for E-Ink display charging (optional)
  • Support for external harvesting antenna

Energous’ WattUp wireless charging technology is based on radio frequency, which provides a number of benefits for wireless charging including the ability to be designed into small form factor products and devices without flat surfaces.

To learn more about Energous, please visit Energous.com or follow the company on Twitter, Facebook and LinkedIn. To learn more about e-peas, please visit e-peas.com or follow the company on Twitter and LinkedIn.

LCDduino – Arduino Compatible 16×2 LCD module

The LCDduino board enables users to create many applications/projects that require a 16×2 LCD display and Arduino. The board has the exact size of 16×2 LCD and can be installed on the backside of the LCD. This is a low-cost solution that has onboard Arduino + LCD so no extra Arduino Nano or Arduino board is required. The Arduino compatible hardware includes onboard programming and boot-loader connectors, Atmega328 microcontroller, and 16×2 LCD interface. Each Arduino I/O Pin including the VCC and GND is exposed to the connectors for easy connection with sensors and other devices. The board enables the easy interface of many devices and sensors. The operating power supply is 7 to 15V DC.

Key features:

  • Arduino Compatible Hardware
  • Operating Power Supply 7 to 15V DC (VDD-GND Pins) or 5V DC (VCC-GND Pins)
  • Arduino Digital Pin D2, D3, D4, D5, D11, D12 connected to 16×2 LCD
  • Arduino Digital Pin D6, D7, D8, D9, D10, D13, D0, D1 I/O Pins are available for external Interface
  • Arduino Analog Pin A0, A1, A2, A3, A4, A5, A6, A7 Pins are available for external interface
  • Each Digital and Analog Pin includes VCC and GND for easy interface to external sensor and device
  • On-Board 5V Regulator
  • On-Board Trimmer Potentiometer to set the Contrast of LCD
  • On-Board Current Limiting Resistor R2/R3 for LCD Back Light
  • On-Board Reset Switch
  • On-Board Bootloader Burning Connector for New ATmega328 Micro-controller (D10, D11, D12, D13, VCC and GND Pins)
  • On-Board Arduino IDE Programming Connector (RX, TX, Reset, VCC and GND Pins)
  • 4 x Mounting Holes 3.2mm Diameters
  • PCB Dimensions 80 x 35.72 mm

Programming the Atmega328

After the board assembly, the brand new Atmega328 microcontroller requires burning the bootloader before it can be programmed using Arduino IDE. Refer to the connection diagram and follow the links below to learn more about bootloader and Arduino IDE programming.

Arduino example code is provided below to test the project. This code will help you to convert this board into a 0 to 5V Voltmeter. Just connect the DC source at analog in A0 to measure the DC voltage.

Schematic

Parts List

NOQNTYREF.DESC.MANUFACTURERSUPPLIERSUPPLIER'S PART NO
16CN1-CN68 PIN MALE HEADER 2.54MM PITCHWURTHDIGIKEY732-5321-ND
21CN76 PIN MALE HEADER 2.54MM PITCHWURTHDIGIKEY732-5319-ND
31CN84 PIN MALE HEADER 2.54MM PITCHWURTHDIGIKEY732-5317-ND
41CN94 PIN MALE HEADER 2.54MM PITCHWURTHDIGIKEY732-5317-ND
52C1,C710uF/25V SMD SIZE 0805MURATA/YAGEOMOUSER
62C2,C30.1uF/50V SMD SIZE 0805MURATA/YAGEOMOUSER
72R3,C4DNP
82C5,C622PF/50V SMD SIZE 0805MURATA/YAGEOMOUSER
91DS1LCD 16x2DISPLAYTECHMOUSER758-162JBABW
101D11N4148 SMD MICROCHIPDIGIKEY1086-15170-ND
111PR110K PRESET/TRIMMERBOURNSDIGIKEY3362P-103LF-ND
121R110K 5% SMD SIZE 0805MURATA/YAGEO
131R222E 5% SMD SIZE 0805MURATA/YAGEO
141R410E 5% SMD SIZE 0805MURATA/YAGEO
151R51M 5% SMD SIZE 0805MURATA/YAGEO
161SW1TACTILE SWITCHE-SWITCHDIGIKEYEG2513-ND
171U1ATMEGA328TQPF-32MICROCHIPDIGIKEYATMEGA328P-AURCT-ND
181U23 PIN MALE HEADER 2.54MM PITCHWURTHDIGIKEY732-5316-ND
191U3LM7805-DAPK DON SEMIDIGIKEYMC78M05CDTGOS-ND
201X116MhzECS INCDIGIKEYX1103-ND
211SCKLCD SOCKET 16PIN MALE 2.54MMADAM TECHDIGIKEY2057-PH1-16-UA-ND

Connections

Gerber View

Photos

Video

ATMEGA328 Datasheet

4 Channel Analog Video Distribution Amplifier

The project presented here is a low-cost video distribution amplifier capable of driving up to four video lines. The amplifier is configured with a non-inverting gain of 2. The input video source is terminated in 75 Ohms and is applied to the high impedance non-inverting input. Each output line is connected to the op-amp’s output via 75 Ohms series back termination resistor for proper cable termination. The termination resistor at the other end of the lines divides the output signal by 2, which is compensated by the gain of 2 of the op-amp. The project is built using AD8010 op-amp which is optimized for this specific function of providing excellent video performance in driving multiple video loads in parallel. Significant power is saved and heat sinking is greatly simplified because of the ability of the AD8010 to obtain this performance when running on ±5 V supply. Circuit provides 46dB of output-to-output isolation at 5Mhz driving back terminated 75 Ohms cable. Ferrite beads and high-value ceramic capacitors are used on the power supply input to reduce the noise.

Features

  • Power Supply +/-5V DC (Dual 5V Symmetrical Power Supply) @ 20mA
  • RCA Connector for Video In
  • 4 x RCA Connector for Video Output
  • Power LED
  • PCB Dimensions 69.06 x 29.69 mm

The AD8010 is a low-power, high current amplifier capable of delivering a minimum load drive of 175 mA. Signal performance such as 0.02% and 0.03° differential gain and phase error is maintained while driving eight 75 Ω back terminated video lines. The current feedback amplifier features gain flatness to 60 MHz and –3 dB (G = +1) signal bandwidth of 230 MHz and only requires a typical 15.5 mA supply current from ±5 V supplies. These features make the AD8010 an ideal component for Video Distribution Amplifiers.

Schematic

Parts List

NO.QNTY.REF.DESC.MANUFACTURERSUPPLIERSUPPLIER PART NO
11CN13 PIN MALE HEADER 2.54MM PITCHWURTHDIGIKEY732-5316-ND
23C1,C3,C50.1uF/50V SMD SIZE 0805YAGEO
32C2,C4100uF/10V SMD SIZE 1210KEMETDIGIKEY399-11631-1-ND
41D1LED RED SMD SIZE 0805OSRAMDIGIKEY475-1415-1-ND
51J1RCA FEMALE CONNECTORKYCON INCDIGIKEY2092-KLPX-0848A-2-R-ND
61J2RCA FEMALE CONNECTORKYCON INCDIGIKEY2092-KLPX-0848A-2-R-ND
71J3RCA FEMALE CONNECTORKYCON INCDIGIKEY2092-KLPX-0848A-2-R-ND
81J4RCA FEMALE CONNECTORKYCON INCDIGIKEY2092-KLPX-0848A-2-R-ND
91J5RCA FEMALE CONNECTORKYCON INCDIGIKEY2092-KLPX-0848A-2-R-ND
102L1,L2FERRITE BEAD SMD SIZE 0805WURTHDIGIKEY732-1613-1-ND
113R1,R7,R8499E 1% SMD SIZE 0805YAGEO
125R2,R3,R5,R6,R975E 1% SMD SIZE 0805YAGEO
131R4150E 1% SMD SIZE 0805YAGEO
141U1AD8010 SO ICANALOG DEVICESDIGIKEYAD8010ARZ-ND

Connections

Gerber View

Photos

Video

AD8010 Datasheet

TOP PCB Companies